Study on the Robust Wavelet Threshold Technique for Heavy-tailed Noises
نویسندگان
چکیده
Interesting signals are often contaminated by heavy-tailed noise that has more outliers than Gaussian noise. Under the introduction of probability model for heavy-tailed noises, a robust wavelet threshold based on the minimax description length principle is derived in the εcontaminated normal family for maximizing the entropy. The performance and their measurement criterion for the robust wavelet threshold are studied in this paper. By the proposed performance measurement criterion, several kinds of noisy signals are processed with the wavelet thresholding techniques. Compared with classical threshold based on Gaussian assumption, the robust threshold can eliminate the heavy-tailed noise better, even if the precise value of ε is unknown, which shows its robustness. The further experiment shows that soft threshold is more suitable than hard threshold for robust wavelet threshold technique. Finally, the robust threshold technique is applied to denoise the practically measured gas sensor dynamic signals. Results show its good performances.
منابع مشابه
Comparative Analysis of Image Denoising Methods Based on Wavelet Transform and Threshold Functions
There are many unavoidable noise interferences in image acquisition and transmission. To make it better for subsequent processing, the noise in the image should be removed in advance. There are many kinds of image noises, mainly including salt and pepper noise and Gaussian noise. This paper focuses on the research of the Gaussian noise removal. It introduces many wavelet threshold denoising alg...
متن کاملA COMPARATIVE ANALYSIS OF WAVELET-BASED FEMG SIGNAL DENOISING WITH THRESHOLD FUNCTIONS AND FACIAL EXPRESSION CLASSIFICATION USING SVM AND LSSVM
This work presents a technique for the analysis of Facial Electromyogram signal activities to classify five different facial expressions for Computer-Muscle Interfacing applications. Facial Electromyogram (FEMG) is a technique for recording the asynchronous activation of neuronal inside the face muscles with non-invasive electrodes. FEMG pattern recognition is a difficult task for the researche...
متن کاملRobust wavelet thresholding for noise suppression
Approaches to wavelet-based denoising (or signal enhancement) have so far relied on the assumption of normally distributed perturbations. To relax this assumption, which is often violated in practice, we derive a robust wavelet thresholding technique based on theMinimax Description Length principle. We rst determine the least favorable distribution in the "-contaminated normal family as the mem...
متن کاملWavelet thresholding for some classes of non-Gaussian noise
Wavelet shrinkage and thresholding methods constitute a powerful way to carry out signal denoising, especially when the underlying signal has a sparse wavelet representation. They are computationally fast, and automatically adapt to the smoothness of the signal to be estimated. Nearly minimax properties for simple threshold estimators over a large class of function spaces and for a wide range o...
متن کاملECG signal performance de-noising assessment based on threshold tuning of dual-tree wavelet transform
BACKGROUND Since the electrocardiogram (ECG) signal has a low frequency and a weak amplitude, it is sensitive to miscellaneous mixed noises, which may reduce the diagnostic accuracy and hinder the physician's correct decision on patients. METHODS The dual tree wavelet transform (DT-WT) is one of the most recent enhanced versions of discrete wavelet transform. However, threshold tuning on this...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- JCP
دوره 6 شماره
صفحات -
تاریخ انتشار 2011